Department of the Navy SBIR/STTR Transition Program

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
NAVSEA #18-550

WHO
SYSCOM: NAVSEA
Sponsoring Program: IWS 3.0 Weapons
Transition Target: Navy Hypervelocity Projectile
TPOC: (301)227-4501

Other transition opportunities: In addition to control surfaces, hypersonic vehicle leading edges, radomes and antennae all benefit with the use of high temperature ceramics. As an example, high temperature, monolithic ceramics are currently being evaluated for radomes and antennae due to their desirable durability and dielectric properties. Robust joints are required to join these components to the surrounding metallic airframe. Outside of hypersonic projectile applications, ceramic-metal joining technology would be desirable in a variety of commercial industries including gas-turbine engines, medical CAT scan equipment, chemical processing, cutting tools and high temperature furnaces.

WHAT

Operational Need and Improvement: When traveling at hypervelocity speeds, the sharp leading edges of advance high speed missile and projectile control surfaces, such as those used on the Navy Hypervelocity Projectile, experience severe heating that exceed the capabilities of most refractory metals. At the same time, dynamic launch forces may be too extreme for high temperature ceramics. Such competing needs call for a hybrid design which utilizes both materials.

Specifications Required: The design of an appropriate metal-ceramic joint is critical for the successful design of an optimized hybrid control fin to meet the expanding performance requirements of future high speed missiles and projectiles with more demanding operational needs. Careful consideration must also be given relative to cost, thermal shock performance and integration with an existing munition system.

Technology Developed: MR&D has successfully demonstrated the feasibility of ceramic-metal joints for hypersonic vehicles through a combined analytical and experimental program. Finite element simulations were performed using representative design loads (structural, thermal and inertial) for a HVP projectile control surface. The design was successively modified and improved until a robust design was generated. Using this final hybrid fin, a subelement test article was designed which incorporated the main features of the metal to ceramic joint for flexure testing to demonstrate it’s ability to carry the required loads. Continued research has resulted in a higher strength joint which is being demonstrated under both arc jet and high speed gun testing to demonstrate thermal shock and high dynamic load performance, respectively.

Warfighter Value: The successful development of a robust metal-ceramic joint is required to design a hybrid control fin for future hypersonic projectiles with increasing performance, speed and range requirements.

HOW

Projected Business Model: As a service-based company, MR&D does not retain ownership of the resulting designs. Ultimately, the final design will be owned by the hypervelocity projectile Prime contractor. In order to facilitate this transition, MR&D will require a close working relationship with such companies to ensure that the final design blends with current operational requirements. Under the current effort, MR&D is working with a current HVP Prime contractor and their current design. At the conclusion of the effort, MR&D will deliver four control fins to the contractor for consideration in a future launch test.

Company Objectives: MR&D seeks to discuss current needs relative to metal-ceramic joints for hypersonic applications with ceramic and metal fabricators along with other prime contractors. The experienced gained on this program will directly benefit future programs which seek a similar design solution.

Potential Commercial Applications: Commercial space companies, such as SpaceX, Generation Orbit and Virgin Galactic are gradually developing vehicles capable of hypersonic flight. As operational needs for this vehicles increase, there will be a need to develop robust metal-ceramic joints in order to leverage the performance benefits offered by each material.

Contact: Evan O'Connor, Research Engineer
evan.oconnor@m-r-d.com 610-964-9000 x109

WHEN

Contract Number: N00178-17-C-7006 Ending on: September 1, 2020

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Risk Level</th>
<th>Measure of Success</th>
<th>Ending TRL</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survive peak bending moment</td>
<td>Med</td>
<td>Experimental validation of brazed and mechanically attached joint options</td>
<td>5</td>
<td>September 2019</td>
</tr>
<tr>
<td>Survive thermal shock conditions comparable to those experienced by 32MJ EMRG</td>
<td>Med</td>
<td>Demonstration of joint performance under representative thermal shock conditions</td>
<td>6</td>
<td>December 2018</td>
</tr>
<tr>
<td>Survive high dynamic load conditions comparable to those experienced by 32MJ EMRG</td>
<td>Med</td>
<td>Demonstration of joint performance under representative dynamic loading conditions</td>
<td>6</td>
<td>June 2019</td>
</tr>
</tbody>
</table>

Technology Developed:

Hybrid Control Fins under Development for Hypervelocity Projectiles

Given the experience by 32MJ EMRG conditions comparable to those generated, the Hybrid Control Fins [1] is being designed by MR&D for testing [2] in order to establish both structural and thermal shock performance capabilities. The fins are a critical element to hypersonic vehicle and missile designs. As such, a robust joint to attach the Fin to the surrounding metallic airframe is required. As a result, the design is being performed in a hybrid configuration of metal and ceramic materials.

The Hybrid Control Fins are being designed for future high speed hypersonic applications. The hybrid design will result in a joint that enhances the performance of the entire missile or vehicle through increased strength [3] and improved shock resistance [4].

Figure 1: Hybrid Control Fin

[1] Hybrid Control Fins under Development for Hypervelocity Projectiles
[2] Experimental validation of brazed and mechanically attached joint options
[3] Demonstration of joint performance under representative thermal shock conditions
[4] Demonstration of joint performance under representative dynamic loading conditions

Specifications Required:

Survive peak bending moment
Survive thermal shock conditions comparable to those experienced by 32MJ EMRG
Survive high dynamic load conditions comparable to those experienced by 32MJ EMRG

Risk Level:
Med - Medium

Measure of Success:
Experimental validation of brazed and mechanically attached joint options
Demonstration of joint performance under representative thermal shock conditions
Demonstration of joint performance under representative dynamic loading conditions

End Goal:
Successfully develop a hybrid joint that can survive high dynamic load conditions and thermal shock conditions comparable to those generated by 32MJ EMRG.

Contact:
Evan O'Connor, Research Engineer
evan.oconnor@m-r-d.com 610-964-9000 x109

Potential Commercial Applications:

Commercial space companies, such as SpaceX, Generation Orbit and Virgin Galactic are gradually developing vehicles capable of hypersonic flight. As operational needs for this vehicles increase, there will be a need to develop robust metal-ceramic joints in order to leverage the performance benefits offered by each material.

Evan O'Connor, Research Engineer
evan.oconnor@m-r-d.com 610-964-9000 x109

Topic # N161-046
Ceramic-Metal Joining for Hypersonic Vehicle and Missile Components
Materials Research & Design