WHO

SYSNOM: ONR
Sponsoring Program: Code 33
Transition Target: EM Rail Gun
TPOC: Mr. Donald Hoffman
Notes: Additional Benefits/Goals:
 - TRL/MRL 5 @ 2 Qtr 2019
 - TRL 5/MRL 6 @ 2 Qtr 2020

NEFWCF - Nanomaterial Enhanced Filament Wound Composite Flywheel
DOD - Department of Defense
CNT - Carbon Nanotube
FEM - Finite Element Model
INP - Innovative Naval Prototype

WHAT

Operational Need and Improvement:
The US Navy is looking to develop a composite flywheel energy storage system with improved capacity through CNT material integration for ultra-high density megawatt-scale pulse load power.
SDC’s CNT integration manufacturing technique improves the strength of composite flywheel materials by up to 30% to avoid critical failure modes and improve maximum energy storage and power delivery.

Specifications Required:

- Energy storage: 50 MJ
- Power delivery: 5+ MW
- Minimum usage lifetime: 60000 hours, Support >20000 cycles
- Power storage density > 3 MW/m3
- Continuously online charge-discharge of up to 50% duty cycle
- 26” shipboard hatchable design for easy removal or installation of components
- Modular installation and operation capability to multi-MW levels

Technology Developed:

- SDC has designed a NEFWCF rotor that meets all Navy requirements
- Design is scalable for high production rates
- Provides 30% energy storage improvement over current technology

Warfighter Value:

- Improved energy storage/pulse power delivery
- Modular design allows for mission specific configurations
- Easy installation and reconfiguration through hatchable design
- Interference fit design reduces manufacturing cost
- Quick design reconfiguration for new systems through proven and tested FEM

WHEN

Contract Number: N68335-17-C-0135
Ending on: April 12, 2019

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Risk Level</th>
<th>Measure of Success</th>
<th>Ending TRL</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Design Review (PDR)</td>
<td>N/A</td>
<td>Design review with ONR buy off</td>
<td>3</td>
<td>3rd QTR FY18</td>
</tr>
<tr>
<td>Initial Test Article Failure Test</td>
<td>N/A</td>
<td>Article performance compared to FEM</td>
<td>4</td>
<td>3rd QTR FY18</td>
</tr>
<tr>
<td>Critical Design Review (CDR)</td>
<td>Med</td>
<td>Design review with ONR buy off</td>
<td>4</td>
<td>4th QTR FY18</td>
</tr>
<tr>
<td>Prototype Manufacture and Preliminary Testing</td>
<td>High</td>
<td>Successful testing correlated with model</td>
<td>5</td>
<td>2nd QTR FY19</td>
</tr>
<tr>
<td>High Acceleration and Cyclic Fatigue Testing</td>
<td>High</td>
<td>Successful testing</td>
<td>6</td>
<td>1st QTR FY20</td>
</tr>
</tbody>
</table>

HOW

Projected Business Model:

- SDC will manufacture NEFWCF composite rotors in our state-of-the-art 70,000 sqft. composite manufacturing production facility
- Production rate is expected to begin at 100 rotors/year for the first year and scale up to 400 rotors/year or market required rate over three years
- SDC will assemble deliverable assemblies at our production facility
- SDC will sell rotor assemblies to the pulse power system prime contractor
- SDC will work with the pulse power system prime to coordinate integration strategies

Company Objectives:

- Integrate ultra-high-speed/acceleration NEFWCF rotor technology into future pulsed power systems
- Secondary objective is to identify alternative insertion opportunities including high-speed rotary structures

Potential Commercial Applications:

- Power grid support for alternative power generation (solar, wind, etc.)
- Performance and commercial transport vehicle power and stability
- Construction equipment remote power

Contact: Jeremy Senne, Principal Investigator
jsenne@sdcomposites.com
888-751-0450 x 126