

Optimax Capabilities Prototype Optics in One Week

Dedicated to supporting projects that require:

Small volume • High quality • Quick delivery

Industries We Serve

Medical Devices

Optimax provides OEM optics for a femto- second laser in an innovative 3D surgical platform.

Aerospace

Optimax has supplied NASA with high quality imaging lenses, for projects like Mars Rovers, designed for position sensing, mapping landforms, and optical analysis.

Semiconductor

Optimax produces optics behind some of today's most breakthrough technologies including semiconductor/solid-state lighting and displays.

Optimax **Difference**

Aspheres

Optimax makes aspheres for UV, Visible and IR applications using proprietary "grind & shine" techniques to produce low scatter surfaces.

Freeforms

Optimax can manufacture freeform optics that are designed for systems that require fewer elements, lighter weight and increased flexibility, which increases overall performance of systems.

Coatings

Optimax provides coatings to reduce risk and production time on finished, complex optics. Our clean environment, thin film coating lab has the capability to coat from UV through IR wavelengths.

For more information visit www.optimaxsi.com/capabilities

Optimax regularly manufactures custom:

Aspheres

Attribute	Minimum	Maximum	
Diameter (mm)	3	500	
Radius (mm)	-8 (concave)	∞1	
Sag (mm)	0	50 ¹	
Departure (mm)	0.01	20	
Included Angle	0	120	

¹For concave surfaces the maximum may be smaller, limited by tool clearance. Short radii have lower maximums.

Spheres

ttribute	Minimum	Maximum
iameter (mm)	3	500 ¹
adius (mm)	±1	∞^2
spect Ratio ⁴	1:1	30 ³
ncluded Angle (°)	0	210 ²

¹Limited by machine envelope. ²Metrology dependent. ³Depends on metrology and finish options. ⁴Diameter divided by center thickness

Cylinders / Freeforms

Attribute	Minimum	Maximum
Length (mm)	3	500
Width (mm)	2	300
Cylinder Radius (mm)	10	~
Concave sag to flat (mm)	0.100 ¹	=Radius

¹Flat surfaces lead to scratching problems & polisher contact issues. For both practical & economic reasons consider plano here.

Prisms / Flat Optics

Attribute	Minimum	Maximum	
Diameter (mm)	3	500	
Thickness	1	150	
Aspect Ratio ¹	1	50 ²	

¹Diameter divided by thickness. ²Material dependent.

Coatings

Technologies	Coating Types	
lon Beam Sputtering	Antireflection	
Plasma lon Assisted Deposition	Beam Splitters	
Reactive Evaporation	Polarizers	
Thermal Evaporation	Metal Mirrors	
	Dielectric Mirrors	
	Filters	

Optimax Capabilities

Optimax manufactures the optics behind breakthrough technologies in aerospace, defense, semiconductor and medical devices. Our advanced manufacturing system allows us to test and deliver highly complex optics with the speed and performance your programs require.

We manufacture optical components, including:

Aspheres	Optical Domes
Spheres	Prisms and Flats
Cylinders	Freeforms

Our facility has diverse capabilities for making a variety of optical components up to 500 mm in diameter. We offer a wide range of optical materials for specialized applications from the deep ultraviolet (DUV) to the far infrared (FIR), including:

- All optical glasses and fused silica
- Optical crystals CaF₂, MgF₂, ZnS, ZnSe, Ge, Si, Sapphire
- Optical ceramics Spinel, AlON, Clearceram, Zerodur

Optimax incorporates a broad range of manufacturing technologies from which we can choose the best process for your requirements. Fabrication capabilities range from conventional machinery to highly deterministic CNC machining, including:

- CNC subaperture polishing for aspherical and toroidal surfaces
- Magneto Rheological Finishing (MRF)
- Optimax patented VIBE polishing

For more information visit www.optimaxsi.com/capabilities