# Department of the Navy SBIR/STTR Transition Program

STATEMENT A. Approved for public release; distribution is unlimited. ONR Approval # 43-2203-16

### Topic # N13A-T012

Mechanical Property Characterization and Modeling for Structural Mo-Si-B Alloys for High Temperature Applications
Imaging Systems Technology

# **WHO**

SYSCOM: ONR

**Sponsoring Program:** Propulsion Materials Program

**Transition Target:** Jet engine hot gas stream static components.

TPOC:

David Shifler david.shifler@navy.mil

Other transition opportunities: AFRL/RXCM has expressed interest in Mo-Si-B and has purchased small test panels for the CRDE (Continuous Rotary Detonation Engine) test rig.



F-35B Lightning II , 03/08/2016, 160308-M-BL734-845, U.S. Marine Corps Photo by Cpl. Jonah Lovy/Released

#### **WHAT**

**Operational Need and Improvement:** Currently Mo-Si-B can only be manufactured by a handful of lab scale production techniques. Transitioning Mo-Si-B to a "production ready" state requires development of a robust scaleable process.

Specifications Required: Ultimate Tensile Strength 60ksi. Tensile Strength Characterization RT to 1370 degrees C. Static Oxidation Resistance between 815 to 1370 degrees C.

**Technology Developed:** The team is investigating controlled atmosphere spray drying and post processing steps of the Mo-Si-B alloy. These techniques enable the ability to produce controlled microstructure as well maintain quality in the scaled process.

**Warfighter Value:** US military aircraft can realize significant (20-40%) fuel savings from jet engine components made of Mo-Si-B materials. Aircraft will benefit from tough, oxidation resistant alloy composites, usable in air to 1370 degrees C.

# WHEN Contract Number: N00014-15-C-0069 Ending on: January 30, 2017

| Milestone                                                     | Risk<br>Level | Measure of Success                                                        | Ending<br>TRL | Date         |
|---------------------------------------------------------------|---------------|---------------------------------------------------------------------------|---------------|--------------|
| Oxidation resistance at 1,200 degrees C                       | N/A           | 300 mg/cm^2 weight loss at 500 hours.                                     | 3             | January 2012 |
| Oxidation resistance at 1,300 degrees C                       | N/A           | 20 hour weight loss rate<br>below 0.05 mg/cm^2-hr                         | 3             | May 2015     |
| Small billet production                                       | N/A           | Billet over 200g with<br>density beyond 95% of<br>theoretical             | 3             | March 2016   |
| Test of Mo-Si-B panel on Continuous Rotary Detonation Engine. | N/A           | Component survived the full duration of the test at maxiumum temperature. | 5             | March 2016   |
| Testing of Mo-Si-B component on static jet engine rig         | Med           | Component meets or exceeds required test metrics                          | 7             | June 2017    |

# **HOW**

**Projected Business Model:** Imaging Systems Technology (IST) will team with prime contractors to supply raw materials for part manufacturing.

**Company Objectives:** Imaging Systems Technology desires to become a strategic supplier of the Mo-Si-B technology and finished alloy powder to the aviation industry.

**Potential Commercial Applications:** Components of future engine designs such as the Continuous Rotary Engine (CRDE), Current engine combustor panels, flaps and seals are likely applications of the Mo-Si-B technology.

Contact: Oliver M. Strbik, P.E., Executive Vice President ostrbik@teamdst.com (419) 536-5741 x120