Department of the Navy SBIR/STTR Transition Program

Statement A: Approved for Release. Distribution is unlimited.

WHO

SYSCOM: NAVSEA

Sponsoring Program: Team Ships, PMS 385
Transition Target: JHSV

TPOC:

(540)653-6581

Other transition opportunities:
SOF boats, patrol boats, USMC assault support boats with
weapons, instruments or personnel adversely affected by rough rides. TEU-size mission modules, e.g. surgical units or electronics repair units, placed on any ship and benefiting from a high degree of stabilization against vessel motions Motion-sensitive payloads placed on land or air vehicles. High-fidelity physical simulator for testing
payloads in high-motion environments.

| WHEN | Contract Number: | N00024-15-C-4021 | Ending on: January 19, 2017 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Risk
 Level | Measure of Success | Ending
 TRL | Date |
| Milestone | Low | TPOC approval | 3 | November 2015 |
| Demonstrator PDR | Med | TPOC approval | 3 | April 2016 |
| Demonstrator CDR | Med | In-lab tests and QA
 complete | 4 | September
 2016 |
| Demonstrator delivery to
 NSWC Dahlgren | Med | Motion, acceleration
 and jerk reduction | 5 | October 2016 |
| Stabilization demo on
 motion base with payload | | | | |

Topic \# N112-137
Active Motion-Compensation Technology for Roll-On/Roll-Off Cargo Vessel Discharge to Floating Platforms
Advanced Technology \& Research Corp.

WHAT

Operational Need and Improvement: JHSV (also known as EPF) is a fast, catamaran-type ro-ro ship able to perform a variety of sealift and expeditionary missions. Relative to large ships, it has a different and troublesome ship motion profile involving strong accelerations and jerk. For operation of motionsensitive payloads on JHSV, other small craft and boats, partial or complete stabilization is needed.
Specifications Required: The system must reduce motions transmitted to a payload to "no worse" than such systems would experience on a large V-hull ship. The threshold goal is to reduce maximum accelerations on the JHSV in sea state 4 by 50% and to mitigate jerking and vibration. The system must have its own sensor set and anticipate periodic movements. Contractor must demonstrate 6 DOF motion compensation of a compact $2,000 \mathrm{lb}$ payload in Phase II, and indicate a scaling path for stabilization of less compact and heavier payloads.
Technology Developed: Motion Compensation Platform (MCP) flexibly interfaces with the host ship and payload. It is a self-contained system (except for electrical power) "bolted" to the vessel and payload. The MCP mechanism handles translational and rotational movements separately. Its design is well-suited for high heave compensation and heavy payloads. Passive damping may assist with high-frequency perturbations. The controller provides real-time actuator commands and uses history to predict large movements and pre-position for them.
Warfighter Value: The MCP will enable a variety of offensive, defensive and support missions to be performed on small, fast surface platforms under challenging ship motion conditions.

HOW

Projected Business Model: ATR is an engineering design, prototyping and manufacturing organization working to ISO 9001-2008 standards. ATR will work with Systems Integrators to adapt the technology for desired payload - vessel pairings. The technology may be transitioned as a discrete bolt-on product or as a mission system component. ATR will manufacture small and mid-scale hardware and develop operating software.
Company Objectives: ATR seeks to increase its business base and reputation in stabilization technologies. ATR desires to connect with Navy PMs and suppliers of motion-sensitive mission modules, weapons and instruments of utility for small fast vessels. ATR seeks a direct role in hardware manufacturing and control systems provision. Partnering for system integration, joint manufacturing or subcontracting are all of interest.
Potential Commercial Applications: The MCP technology is adaptable to any commercial application in which motion and shock sensitive equipment (or personnel) are to be deployed on vehicles subject to damaging or performance-degrading motions. Maritime applications, including offshore energy exploration and production, are primary, but off-road land vehicles and some aerial platforms may also benefit.

