Department of the Navy SBIR/STTR Transition Program

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. NAVAIR 2019-1026 Topic # N171-005

Deep Learning for Clutter Reduction in Multi-static Coherent Active Sonar Systems Signal Systems Corporation

WHO

SYSCOM: NAVAIR Sponsoring Program: PMA-264 Transition Target: Active off-board acoustics TPOC: (301)757-4443

Other transition opportunities: Advanced signal processing aids

Source: US Navy

Notes: Signal Systems Corporation (SSC) has an impressive history of both successful commercialization of our SBIR programs and collaboration with major DOD contractors. Since 1998, SSC has executed 30 Phase I SBIR projects with 18 continuing to Phase II ; secured 5 Phase II.5 awards or Phase II enhancements plus 2 Rapid Innovation Fund (RIF) programs; and transitioned 9 programs to Phase III.

Signal Systems Corporation excels at transitioning our research and development to valued field capabilities, exemplified by the successful integration of our software into Navy platforms. SSC has transitioned sensor processing, environmental analysis and multi-sensor fusion algorithms to the fleet.

SSC also has completed numerous software integrations with industry partners like Lockheed Martin, Northrop Grumman, Raytheon, General Dynamics and Boeing on major projects. In 2014, Northrop Grumman formally recognized SSC as a valued team member with a World Class Team Award.

WHAT

Operational Need and Improvement: The Navy is seeking reductions in the clutter that is viewed by an operator. Solutions utilizing recent advances in deep learning are sought as innovative approaches to solving these problems.

Specifications Required: The goal is significant clutter reduction.

Technology Developed: SSC is developing neural networks which analyze a small portion of a sonar field and return information specific to that particular sub-region.

Warfighter Value: SSC's machine learning capabilities will reduce sonar operator workload.

WHEN Contract Number: N68335-18-C-0/22 Ending on: September 15, 2020				
Milestone	Risk Level	Measure of Success	Ending TRL	Date
Clutter reduction demonstrated on simulated data	N/A	Performance metrics on simulated active off-board acoustic missions	TRL-4	December 2017
Develop at-sea training dataset	N/A	Minimize performance dropoff between training and testing data	TRL-4	March 2019
Demonstrate clutter reduction on at-sea data, APB step 1	Med	Detector performance, classification latency	TRL-5	September 2020
Build flight prototype software	Low	Performance improvements match performance goals	TRL-6	September 2021
Support NAVAIR test flight	Med	Prototype software out-performs existing software in real-time test	TRL-7	January 2022
Complete APB step 3	Low	Performance of flight software	TRL-8	January 2023

matches prototype

HOW

Projected Business Model: SSC intends to license this software to the Government.

Company Objectives: SSC expects this technology to be the starting point for future development of machine learning technology for applications in acoustic systems. SSC seeks to revolutionize signal processing, information processing, tracking, and automation capabilities of existing acoustic systems through the use of machine learning techniques. SSC sees this technology as the beginning of a set of innovations which will lead to automated acoustic systems which out-perform human operators.

Potential Commercial Applications: Applications of this technology include: radar, ultrasound, satellite remote sensing, thermal imaging