DEPARTMENT OF THE NAVY Fall 2024

Inside

Tailoring technologies for the warfighter: Aptima's human-centered approach to successful transitions 3

From the program manager: What you need to know about the DFARS Disclosure of Information Clause	ı 7
Part of the team: Boeing partners with small businesses to innovate for	
customers	
Department of the Navy Office of Sm Business Programs receives	all
Fiscal Year 2023 Vanguard Award	12
Upcoming events	13
First Look: A snapshot of this year's	

Navy STP participants _____14

Visit

From the director: Introducing the new program director Brian Shipley

I n the winter issue of *Transitions*, Bob Smith announced his retirement effective April 2024. In May, I began serving as acting director for the Department of the Navy (DoN) Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Programs and was promoted to permanent director in August.

Brian Shipley, Director DoN SBIR/STTR

Many of you reading this already

know me. While I'm new to this position, I have more than 30 years of experience working with DoN and DoD programs. I've been directly involved with DoD SBIR/STTR programs since 2007, when I joined the DoD Office of Small Business Programs. In 2013, I transitioned to the DoN SBIR/STTR Programs Office to support policy development, program management and outreach and in 2020 I became the DoN SBIR/STTR commercialization program manager.

In this new role as director, I oversee implementation of the programs to stimulate technological innovations, use small business to meet federal research and development needs, increase private sector commercialization of federally funded research and development, and foster and encourage minority and disadvantaged participation in technological innovation.

I'm honored to have been selected to be the director of the

Department of the Navy SBIR/STTR Transition Program Transitions Newsletter 2024 Fall Edition DoN SBIR/STTR Programs and I look forward to working with all our stakeholders to meet the needs of our force and fleet.

"While I'm new to this position, I have more than 30 years of experience working with DoN and DoD programs. I've been directly involved with DoD SBIR/STTR programs since 2007, when I joined the DoD Office of Small Business Programs."

- Brian Shipley, Director DoN SBIR/STTR

I plan to share my priorities and goals for DoN SBIR/STTR with you in future issues of Transitions. For this issue, I'd like to highlight one recent change to the DoN SBIR/STTR programs.

In FY23, DoN SBIR/STTR introduced a new term to categorize Phase II awards: Catapult. Catapult is not a new way of doing business, it is simply a way to describe DoN-issued Sequential (second Phase IIs within DoN) and Subsequent (crossagency) Phase II awards that leverage prior SBIR/STTR investment to accelerate technology development to meet specific DoN and SYSCOM priority program needs. Eligible small businesses and projects may be nominated by a Naval customer at any time and are approved based on priority of Naval need, availability of SBIR/STTR funding, and potential of additional non-SBIR/ STTR funding. DoN SBIR/STTR programs funded 72 Catapult Phase II contracts in FY23, including:

- 37 new contract starts
- 67 small businesses from 21 different states
- 22 small businesses identified with one or more underserved socio-economic categories
- 68 unique topics issued by DoN and five other federal agencies
- On average 30% of the Catapult portfolio leverages cross-agency investment

Catapult moves at the speed of the Naval customer—no annual call for proposals. The Naval customer drives the process. For more information about Catapult, visit <u>https://navysbir.com/programs/catapult.htm</u>.

As I begin this new role with DoN SBIR/STTR, I look forward to the opportunities ahead and I am excited about continuing our great legacy programs and creating new opportunities to support small businesses, foster innovative R&D, and grow the defense industrial base (DIB).

Sincerely,

32Shipley

Brian Shipley Director DoN SBIR/STTR

Tailoring technologies for the warfighter: Aptima's human-centered approach to successful transitions

By Amie Alscheff

Founded in 1995, Aptima, Inc. has been working to solve human performance-focused problems for the federal government for nearly 30 years. This experience includes more than 500 SBIR/ STTR Phase I and Phase II awards, with numerous technologies successfully transitioning to the DoD and other government clients.

Aptima's Confined Spaces Monitoring System (CSMS) is an SBIR technology originally developed for the Air Force that is currently being adapted to meet Navy shipyard requirements. The CSMS detects and mitigates health and safety hazards for workers performing maintenance and sustainment tasks in confined spaces. Working in confined spaces, with little room to move and few options for entrance and exit, puts workers at risk of serious injury from hazards including insufficient oxygen supply, flammable or explosive atmospheres, and exposure to toxic gases. Aptima's CSMS solution transmits data from wearable sensors to a remote display via secure wireless networking and allows for continuous real-time monitoring of entrants into confined spaces, including factors such as heart rate, motion, and targeted gases in the atmosphere around them.

Aptima is currently working with the Innovations Group at Portsmouth Naval Shipyard in Kittery, Maine, to demonstrate, tailor, and transition the technology for Navy use.

"With the Navy we started in 2020, right before COVID hit, so that was a little curveball thrown at us," recalled John Feeney, principal research engineer at Aptima, Inc. "We did manage to get on the shipyard during COVID, believe it or not. Wearing safety glasses, hard hats and masks at the same time was a challenge, but we were able to demonstrate the technology."

Testing the USAF CSMS with Air Force Maintenance Artisans.

One of the challenges in taking the CSMS from Air Force to Navy is that the size and construction of a Naval vessel is much different from an aircraft, which means the physical nature of the confined spaces is not the same. The system also needs to comply with Navy-specific Occupational Health and Safety Administration (OSHA) regulations and cybersecurity requirements. Some of the Navy's requirements have changed during the development process. "Around the start of 2024, there was a major pivot on the Navy's part," said Feeney. "The system that we originally developed for the Air Force was cloud-based software as a service. When we originally proposed it in 2020, the Navy was pretty firm that they would have an on-premises Navy-run server architecture, so we spent a number of years working through that. Now they're pivoting to developing an enterprisewide cloud-based solution that could fit not just Portsmouth, but any of the Naval shipyards or intermediate repair facilities. We successfully demonstrated a cloud-based alternative to the on-premises Navy-run service at Portsmouth and have already begun transitioning our efforts focused on an enterprise solution vision so it can be applied across the shipyards."

Both the Air Force and the Navy transitions have drawn from a variety of funding vehicles,

Tailoring technologies for the warfighter: Aptima's human-centered approach to successful transitions...continued

according to Feeney. "For the Air Force, it was a Phase III SBIR contract. There was also a Rapid Innovation Fund award; it was an assortment of different contract vehicles and approaches. Each of these different funding vehicles supported different parts of the project for the Navy."

Additional funding to create the Navy version of the CSMS has come through the National Center for Manufacturing Sciences (NCMS) Commercial Technologies for Maintenance Activities (CTMA) program. CTMA is a contracting vehicle that works with industry and academia to advance the development and integration of commercial technologies to aid DoD maintenance activities. "The idea behind CTMA," said Feeney, "is 'try it before you buy it.' It's a streamlined acquisition process where they can buy systems or components to try out, get evaluations, get them in the hands of users, and then decide whether they want to press on. Ours was a little unique in that it was a system that was being tailored for the Navy and it wasn't a commercial off the shelf product at that time. The CTMA is like a BAA. It encompasses all of the DoD maintenance enterprises. It's the one stop shop to get maintenance contracts through, especially when you're not a traditional government contractor."

Over decades of experience, Aptima has refined its strategy for successfully transitioning technologies through the DoD's SBIR/STTR programs. Counterintuitively, this means the company is going after fewer new SBIR awards.

"In the last five to 10 years," said Feeney, "there's been a concerted effort on Aptima's part to get away from doing Phase Is and Phase IIs. We still do them, but now it's targeted and with an eye for extending or enhancing platforms for use in rapidly developing new solutions. They're not our main revenue source anymore and we've transitioned to the Phase III bringing in more revenue. We have a large portfolio of Phase I and Phase II work that we use to create the Phase III vehicles. There's a term coined by AFRL called 'SBIR stitching.' Individual SBIR topics can be very niche and very narrow. What AFRL did was say, 'I need a system, so I'm going to take these four different SBIR technologies and stitch them together to create that system.' That's how the Air Force created one of our first Phase III vehicles, through SBIR stitching."

Having built up a large portfolio of SBIR technologies, Aptima is now more selective about which new SBIR topics it tackles. "We have a whole review process of looking at literally all the topics that come out in any given round. We kind of rack and stack them, see who's interested in what. Then senior management will go through and review them and see if they're aligned with our core mission, which is human centered engineering. If there's not a human component, we typically don't go with it. We've become much more targeted in what we go after and how it aligns with our overall capability areas, whether that be AI, performance augmentation, training and learning, those sorts of things."

According to corporate communications specialist Chelsea Morrissey, at one time Aptima derived up to 60% of its revenue from SBIR funding. In recent years, that percentage has dipped below 25%. "Because they've gotten so much more selective in their process over the years," Morrissey explained, "we're going after fewer, but we're doing it better. We're not just throwing out a handful of darts and seeing what sticks anymore. We're much more selective now. Because of that, the work quality is better and we're able to continue on and push it into those Phase IIIs."

One current project that Aptima is excited about

Tailoring technologies for the warfighter: Aptima's human-centered approach to successful transitions...continued

is MITHRIL (Measures Integration Toolkit for Heat Risk Intervention Logic), which was just selected for a Phase II award. MITHRIL is a heat stress monitoring system that will be deployed during military training to prevent heat strain and heat illness incidents. Similar to the CSMS, MITHRIL pairs wearable sensors with a secure computing platform to monitor physiological data from training participants and proactively detect anyone approaching risk of heat stroke.

Working with the Office of Naval Research (ONR) Human and Bioengineered Systems Division, Aptima is completing the contract's built-in Phase I option while the Phase II is being finalized. Unique to the Navy's SBIR program, the Phase I option provides funding to cover the gap between Phase I and Phase II awards. "It allows you to continue work on the Phase I while the Phase II decision is being made," said Feeney. "It's a pretty smart idea because contracts could take three or four months where you're just sitting idle. They can release this other pocket of funds that keeps you working on the project and really lets you hit the ground running in Phase II. With other organizations, the way they have the Phase I and Phase II split, there could be this gap. It's a nice way the Navy helps prepare you to really succeed in Phase II."

"We're planning on going to a few different events this summer out at Camp Pendleton for the Marines and possibly at Fort Leonard Wood, to learn more about the training events that are going on and start doing some early testing of our system and to really focus on making sure that we don't build something that just works in theory, but really works in the workflow of the training events," said Isabel Erickson, a research engineer in the Performance Augmentation Systems Division at Aptima. "We're going to be developing a testing plan, but summer is a really good time to do the testing for heat stress so we don't want to waste that time. We're getting our feet wet with the testing and understanding more specific requirements. During the Phase I option, we've already been able to talk way more with our customers and our stakeholders, so that's been a big help."

A remote attendant monitoring stations demonstration from the initial testing for Portsmouth Navy Shipyard in 2020.

For its Navy Phase II projects, Feeney said Aptima tries to take advantage of the Navy STP program.

"I think it's become more of a priority to work in programs like this, simply because it provides three key things: One, the Navy STP program gives you incredible background about the structure and organization of the Navy and the different components and how they interact with each other. From a workforce perspective, it gives an understanding of why you should talk to this organization because they focus on training, let's say, versus some other weapon system or something like that. Working with our business development group, we're going to try to get all the materials together from the program and put them in a repository so it would be available companywide, not just for those SBIR projects that decide to go with the STP. And I was shocked at the number and the quality of the webinars they would have on almost a weekly basis.

"The second thing it does is it gives visibility to that project to others within the Navy that might not see it. Isabel and I were both at the Showcase event in Arlington this spring and we met people we never would have met on the project. We brought in other customers of ours in the Navy that didn't know we were working on this, and new people. That was really helpful.

"The third thing it does is provide that avenue for transition. And it might not even be transition with the Navy, it might be some other organization. In fact, I think one of the people from the Navy said we should talk to someone in the Army about some of the technology we're working on. That's what we've been trying to do with Navy STP."

While the DoD is Aptima's biggest customer, the company also works with other federal agencies,

including NASA, DHS, and the DOT. That work typically happens through the agencies' SBIR/STTR programs as well. Driven in part by the recent hiring of Svitlana Volkova as chief computational scientist, Aptima is also making a push to expand its work with DARPA, ARPA, and IARPA, said Morrissey.

Fall 2024

Morrissey's role at Aptima gives her an overview of the work taking place within many different divisions at the company. From her perspective, the key to building a good working relationship with the federal government is the same across agencies. "The number one thing is meeting them where they're at. Instead of us trying to assume that we know better, we work with our customers to figure out what their actual needs are, their hot buttons. Even if, in the grand scheme of things, it seems insignificant, we do our best not to overlook any tiny-even minuscule-touch points that they have because it all matters to our customers. It goes back to our human centered ideal. We're humans, they're humans. Let's talk to them like humans. Let's figure it out."

Aptima's mission is to optimize and improve human performance in mission-critical technologyintensive settings. Focusing on the human element, Aptima creates tailored solutions for its customers across various domains, including defense, intel, aviation, law enforcement, and healthcare. The company is headquartered in Woburn, Massachusetts, with additional offices in Dayton, Ohio, Orlando, Florida, and Puerto Rico. For further information about Aptima, see www. aptima.com.

From the program manager: What you need to know about the DFARS Disclosure of Information Clause

By Steve Sullivan, Navy STTR and Navy STP Program Manager

Welcome to a new occasional feature in *Transitions*. From time to time, I plan to share information pertinent to participants in the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs here.

In this edition, I talk about the Disclosure of Information Clause from the Defense Federal Acquisition Regulation Supplement (DFARS 252.204-7000). I see a lot of misunderstanding about this topic. This is especially evident in Phase I STTR proposals submitted in response to the DoD SBIR/STTR Broad Agency Announcement (BAA), where required documentation is frequently left out.

Information provided here about this DFARS clause is meant to be a synopsis of its application in relation to the SBIR/STTR programs and is not all inclusive.

What it is

In summary, the clause requires that the contractor, and subcontractors to whom the clause flows down, submit any publications resulting from the work contracted to the contracting officers. This is to ensure no sensitive information is included. The clause contains the following primary points:

"(a) The Contractor shall not release to anyone outside the Contractor's organization any unclassified information, regardless of medium (e.g., film, tape, document), pertaining to any part of this contract or any program related to this contract...

Steve Sullivan, Navy STTR and Navy STP Program Manager

"(b) Requests for approval under paragraph (a) (1) shall identify the specific information to be released, the medium to be used, and the purpose for the release. The Contractor shall submit its request to the Contracting Officer at least 10 business days before the proposed date for release."

Sometimes there can be exceptions—or waivers—if portions of the work are considered fundamental. Generally, a small business is not conducting fundamental research, but a subcontractor, such as a university, may be conducting fundamental research for which they want to publish freely. Much of this was outlined in a memo from the Under Secretary of Defense (Acquisition, Technology, and Logistics) on fundamental From the program manager...continued

research, dated May 24, 2010. Waiver requests come up frequently in the STTR program, where 30% of the work must be conducted by a research partner.

"In summary, the clause requires that the contractor, and subcontractors to whom the clause flows down, submit any publications resulting from the work contracted to the contracting officers. This is to ensure no sensitive information is included."

- Steve Sullivan, Navy STTR and Navy STP Program Manager

What companies need to know

First, know and follow the BAA for Phase I proposal submissions. The DoD Instructions state, "Guidance on allowable proposal content may vary by Component. A completed proposal submission in DSIP does NOT indicate that each proposal volume has been completed in accordance with the Component-specific instructions. Accordingly, it is the proposing small business concern's responsibility to consult the Component-specific instructions for detailed guidance, including required proposal documentation and structure..." Second, reference the Navy-specific instructions on submission of fundamental research (a detailed description and reason why this work is to be considered fundamental research) and follow the requirement for your proposal submission. A template can be found at https://navysbir.com/ links forms.htm. Third, be sure to upload all the documents to Volume 5 before submission.

In addition, be aware that in some cases you may need to find a new research partner if a waiver for specific research cannot be granted and the university will not accept the flow down of this DFARS clause.

What program managers need to know

The information on fundamental research provided as part of a Phase I proposal is not a guarantee of a DFARS 252.204-7000 waiver. In addition, there are not, and should not be, "blanket" waivers of the clause. Not including this clause in a contract, or flowing it to subcontracts, would allow free publishing of results without government review. Even if the work is not considered sensitive, it can lead to an aggregation of information, providing insight to U.S. adversaries of research efforts aligned with the protection of our country. All Navy Phase I efforts are contracts—not grants. Therefore, there is no guarantee of waiving this clause, even for universities. As the program manager, if you believe work of the project may be sensitive in any way, a waiver is not required to be granted. Under that circumstance, if a university wishes not to accept the flow down of the clause, they will be unable to be a subcontractor.

Should a waiver be issued for *specific* fundamental research, the program manager and small business will have to be certain not to transmit any sensitive information to the research partner, as it could end up being published—triggering responsibility for this breach.

What universities need to know

If you are approached by a small business to partner on a Navy STTR proposal submission, be sure you too pay attention to the BAA. You will need to submit a detailed description of the fundamental research, broken out by each fundamental effort, and why each effort should be considered fundamental, if you expect to receive a waiver of DFARS 252.204-7000 for these specific efforts. Submitting a letter to the effect "University of X does not accept DFARS 252.204-7000" is not an acceptable submission for consideration of fundamental research. A waiver may not be issued if the research efforts are considered sensitive. In this case,

all publications relating to this contract work will need prior review by the Navy.

What the Phase I BAA reauires

Below is the language in the Navy portion of the BAA. The important focus of this requirement is to submit a detailed description of the work to be considered fundamental and why that work should be considered fundamental.

"The information on fundamental research provided as part of a Phase I proposal is not a guarantee of a DFARS 252.204-7000 waiver. In addition, there are not, and should not be, 'blanket' waivers of the clause."

research and from industrial development, design, production, and product utilization, the results of which ordinarily are restricted for proprietary or national security reasons (defined by National Security Decision Directive 189). A small business concern whose proposed work will include fundamental research and requests to eliminate the requirement for prior approval of public disclosure of information must complete the DoN

> Fundamental Research Disclosure and upload as a separate PDF file to the Supporting Documents (Volume

5) in DSIP as part of their proposal submission. The **DoN Fundamental Research** Disclosure is available on https://navysbir.com/links_ forms.htm and includes instructions on how to complete and upload the completed Disclosure. Simply identifying fundamental research in the Disclosure does NOT constitute acceptance of the exclusion. All exclusions will be reviewed

"Disclosure of Information (DFARS 252.204-7000). In order to eliminate the requirements for prior approval of public disclosure of information (in accordance with DFARS 252.204-7000) under this award, the proposing small business concern shall identify and describe all fundamental research to be performed under its proposal, including subcontracted work, with sufficient specificity to demonstrate that the work qualifies as fundamental research. Fundamental research means basic and applied research in science and engineering, the results of which ordinarily are published and shared broadly within the scientific community, as distinguished from proprietary

and, if approved by the government Contracting Officer, noted in the contract."

While not an exhaustive discussion of DFARS 252.204-7000, these are some key points to keep in mind as you prepare or review Phase I proposals, especially for the STTR program. Make sure your proposals comply in all respects with the DoD instructions provided in the BAA. It will both safeguard national security and improve your chances of a successful award.

- Steve Sullivan, Navy STTR and Navy STP Program Manager

Part of the Team: Boeing Partners with small businesses to innovate for customers

A year ago, Scott Belanger, part of Boeing's Contested Logistics Solution team, had a problem: He needed to fill an empty slot in the company's trade show booth.

"I had an opportunity to suggest how to fill an unexpected opening in one of our trade show booths, and the first thing that came to mind was our small business partners. Why not ask them to come sit in the booth with us, talk to customers alongside us or even host their own meetings in our booth?" he said.

What began then has blossomed in the year since to be an almost monthly occurrence at the trade shows Scott and his team support, and the gold standard of Boeing's small business trade show engagement.

"We've been able to do this seven more times since then, and it's such a clear win-win for all of us. We get a chance to host and showcase small business partners, and small businesses get a chance to share our space and interact with us and our common defense customers. It's one part of our commitment to our global defense customers in ensuring inclusion of the latest gap-filling technologies in the defense space, as small businesses tend to produce faster than large primes," he said.

Boeing's "Small Business Hub" feature at trade shows in 2024-25 is a reflection of a growing focus in Boeing Global Services' (BGS) Government Services on finding small business partners to accelerate innovations that meet the needs of warfighters improving readiness and aircraft availability.

As BGS explores innovative technology solutions for sustainment, modernization and repair of legacy aircraft, small business partners are rapidly developing and fielding critical technologies.

As a recent example, Boeing's Artificial Intelligence Team has created a software tool that uses algorithms

Scott Belanger discussing Boeing aircraft inspection with Air Force Lt. Gen. Lutton (left) and Maj. Gen. Armagost.

Part of the team: Boeing partners with small businesses to innovate for customers...continued

to identify surface skin anomalies from drone photos of aircraft called Automated Damage Detection System (ADDS). BGS has partnered with multiple different small businesses to provide drone operations in demonstrations for the Department of Defense. More details are available in an article available at the following link: https:// www.307bw.afrc.af.mil/ News/Article-Display/ Article/3848122/307thbomb-wing-jets-getinnovative-treatment/.

Scanning unmanned aerial systems are designed for ease of use even if the operator has no previous drone experience.

station and deployed operations. By partnering with small businesses, we can enable DoD units to leverage data for efficient aircraft life cycle cost planning. We combine the best parts of our own products with those of our partners. We want to team and partner with small businesses to build trust and enhance readiness together for the defense customer," said Belanger.

Boeing is also embracing a posture of partnership

that supports small businesses regardless of who is prime on the contract.

"Working with small business drone operators like

Near Earth Autonomy has been a fantastic partnership. The drone operators provide the expertise in acquiring aircraft images, and our software goes to work analyzing and determining where surface anomalies exist, delivering DoD an aircraft-agnostic enhanced exterior inspection capability at point of need," said Belanger.

The partnership allows Boeing to pursue excellence

"We don't need to be prime on everything. Sometimes all a small business needs to get a contract with DoD is to have a company like Boeing standing with them and we are more than happy to do it," Belanger added.

How to get in contact with Boeing

Boeing Global Services is open to partnerships with Navy STP program participants. Interested

in its products while benefitting from the expertise of a small business partner, and vice versa.

companies can reach out to Scott Belanger for more information at <u>Scott.j.belanger3@boeing.com</u>.

"It's a true team effort. We're providing our unique Boeing ADDS AI algorithm in support of both home

Department of the Navy Office of Small Business Programs receives Fiscal Year 2023 Vanguard Award

The Department of the Navy (DoN) Office of Small Business Programs (OSBP) received the prestigious Fiscal Year 2023 Vanguard Award during the Department of Defense (DoD) Small Business Training Week in Chicago, May 1. This recognition underscores the exceptional commitment of the DoN to fostering small business participation in defense procurements.

The DoD Small Business Vanguard Awards program acknowledges the remarkable contributions of DoD small business professionals and acquisition community members who drive small business involvement in defense procurements. The Vanguard Award, the top honor, is bestowed upon the DoD component organization that best exemplifies dedication to Small Business Programs across various functional activities.

Over the past five years, the DoN has consistently surpassed its overall small business goals and increased procurement spend across all socioeconomic groups. Notably, the Navy has made significant first-time awards to Womenowned and HubZone small businesses, significantly elevating spend in these categories over previous years. Under the guidance of Secretary of the Navy Carlos Del Toro, initiatives like the "Ensuring Maximum Opportunity for Inclusion of Small Businesses in the Department of Navy Procurements" memo have strengthened senior leader accountability and commitment to fostering a culture of small business advocacy within the DoN.

Additional highlights of the DoN's commitment to small business utilization include:

- The SECNAV's proactive involvement and understanding of small business challenges, demonstrated through roundtable discussions and strategic initiatives.
- Integration of small business considerations early in the acquisition planning process, along with mentorship programs and outreach efforts to engage the small business community.

The DoN's Office of Small Business Programs continues to lead by example, embodying a steadfast commitment to maximizing opportunities for small businesses within defense procurements.

https://vtm.navyfst.com/

Fall 2024

Upcoming events

DATE	DATE EVENT & LINK	
Dec. 2-5	Dec. 2-5 Aircraft Structural Integrity Program (ASIP) Conference <u>http://www.asipcon.com/</u>	
Dec. 2-6	I/ITSEC https://www.iitsec.org/	Orlando, Florida
Dec. 3-5	Defense TechConnect Innovation Summit & Expo <u>https://events.techconnect.</u> org/DTCFall/	Austin, Texas
Dec. 9-10	ASNECombat Systems Symposium <u>https://www.navalengineers.org/Symposia/</u> <u>TSSCSS2024</u>	Arlington, Virginia
Dec. 10-13	Department of Defense Maintenance Symposium <u>https://web.cvent.com/</u> event/223ff3f4-84fc-442e-a91c-b861d1b4ce56/summary	Salt Lake City
Dec. 11-12	ASNE Technology Systems and Ships <u>https://www.navalengineers.org/Symposia/</u> TSSCSS2024	Arlington, Virginia
Jan. 6-10	AIAA SciTech Forum https://www.aiaa.org/SciTech	Orlando, Florida
Jan. 14-16	Surface Navy Association National Symposium https://navysnaevents.org/ national-symposium/	Crystal City, Virginia
Jan. 27-29	Aero-Engines Americas <u>https://www.aeroenginesusa.com/en/home.html</u>	Fort Worth, Texas
Jan. 28-30	WEST 2025 https://www.westconference.org	San Diego
Feb. 4-5	2025 NAWCWD Industry Days <u>https://www.ccapexpo.com/</u>	Ridgecrest, California
Feb. 4-6	SmallSat Symposium <u>https://2024.smallsatshow.com/</u>	Mountain View, California
Feb. 24-26	Tactical Wheeled Vehicles Conference https://www.ndia.org/ events/2025/2/24/5530twv	Reston, Virginia
Feb. 25-26	National Summit on Uncrewed Aerial Vehicles <u>https://www.</u> americanconference.com/UAVSummit/	San Diego
Feb. 25-March 4	AAAI Conference on Artificial Intelligence <u>https://aaai.org/aaai-conference/</u> save-the-date-aaai-25/	Philadelphia
March 1-5	Pittcon https://pittcon.org	Boston
March 1-8	International IEEE Aerospace Conference https://aeroconf.org/	Big Sky, Montana
March 3-5	Air Force Association Warfare Symposium <u>https://www.afa.org/events/2025-afa-warfare-symposium/</u>	Aurora, Colorado
March 10-13	Satellite 2025 <u>https://www.satshow.com/</u>	Washington
March 17-20	International Wireless Communications Expo (IWCE) <u>https://www.iwceexpo.</u> <u>com/</u>	Las Vegas
March 24-27	DistribuTECH Conference & Exhibition <u>https://www.distributech.com/welcome</u>	Dallas

First look: A snapshot of this year's Navy STP participants

The future of Naval innovation is here. The following pages provide a first look at the innovative Phase II companies currently enrolled in the Navy SBIR Transition Program (Navy STP), where they will get support in transitioning their Phase II SBIR/STTR technology to Sailors and Marines. Each company is listed by SYSCOM under Office of the Secretary of Defense Communities of Interest (CoI) categories most appropriate to their technology. If you see something of interest and want to know more, please contact the company directly.

Corporate contact information and technology quad charts, abstracts, thumbnail descriptions, and company capability brochures for the companies listed below will be available through the Navy STP Virtual Transition Marketplace (Navy STP VTM) online database of innovative Phase II SBIR/STTR technologies by December 2024. Access the VTM at: <u>https://vtm.navyfst.com/</u>.

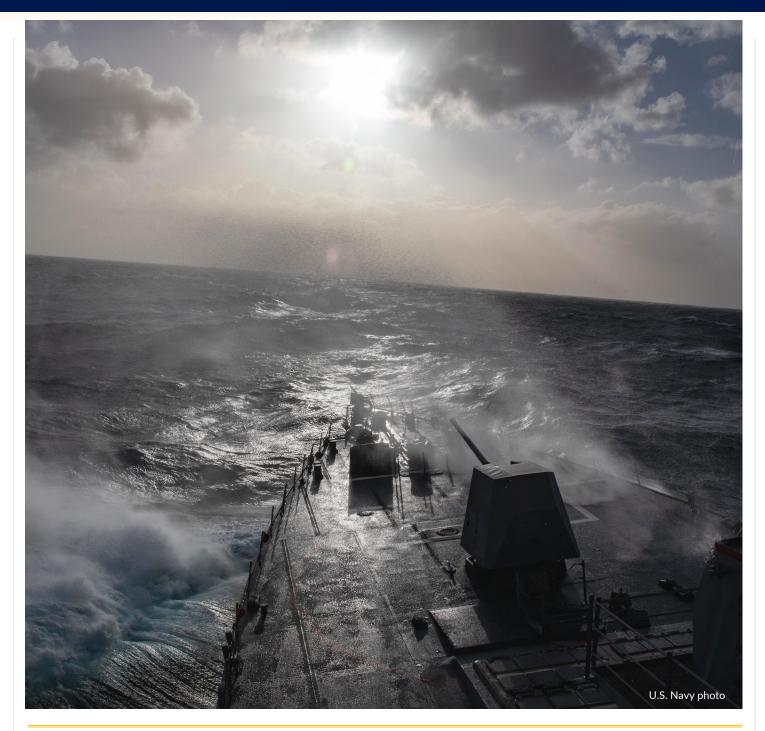
You will have a chance to see these cutting edge innovations in person as well when small businesses present their technologies at a Navy STP Showcase or Technical Information Exchange: WEST 2025, to be held Jan. 28-30, 2025, in San Diego; the NAVAIR and NAVSEA Technical Information Exchange, to be held March 11-12, 2025, in Washington; or Sea-Air-Space 2025, to be held Apr. 7-9, 2025, in National Harbor, Maryland.

	Navy SBIR Transition Program (Navy STP) Participants				
	Company / Topic Title	Topic#	website URL	Showcase	
ics	AdvR Inc.	N221-078		Sea-Air-Space 2025	
ron	Post assembly balancing of Y-Branch splitters used	d in IFOG sensors			
Electroni	Engi-Mat	N212-117		Navy STP SYSCOM	
	Hypersonic Infrared Windows Enabled by Advance	d Nanomaterials			
nced	Intellisense Systems, Inc.	N221-005	https://www.intellisenseinc.com	Navy STP SYSCOM	
Adva	Modular Open-Architecture Digital/RF Optical Conr	nectivity			
A	Kent Optronics, Inc.	N211-005	https://www.kentoptronics.com	Sea-Air-Space 2025	
	Packaged Mid-Infrared Non-Mechanical Beam Stee	erer			
	Kent Optronics, Inc.	N212-103	https://www.kentoptronics.com	Sea-Air-Space 2025	
Multispectral Target and Scene Projector					
	Luna Labs USA, LLC	N192-136	https://www.lunalabs.us/	Navy STP SYSCOM	
	Universal Digital-Analog Receiver and Translator (I	J-DART)			
	Nokomis, Inc	N211-095	https://nokomisinc.com/	Navy STP SYSCOM	
	Aging and Reliability Module (ARM)				
	Sabre Systems, Inc.	N222-112		WEST 2025	
	Low-profile High-Frequency Maritime Antenna				
	TDA Research, Inc.	N22A-T018	https://www.tda.com	Navy STP SYSCOM	
	Enhanced Sensory Perception Via Advanced Synthetic Skin				
	Triton Systems, Inc.	N221-016	https://tritonsystems.com/	Sea-Air-Space 2025	
	Autonomous Onboard Processing Hostile Fire Sensor System				

	Navy SBIR Transition Program (Navy STP) Participants				
	Company / Topic Title	Topic#	website URL	Showcase	
ms	Barron Associates, Inc.	N22A-T005	https://www.barron-associates.com	Navy STP SYSCOM	
atfor	Development of a Psychometrically Validated Spatial	Disorientation Ski	ills Assessment Tool	•	
Air Platforms	Burchell Professional Group, Inc.	N211-057		WEST 2025	
A	Full Phase II Proposal for Flight Deck Tie Downs				
	Diversified Technologies, Inc.	N211-029	http://www.divtecs.com/	Sea-Air-Space 2025	
	Launch, Recovery and Handling of Group 3 through	Group 5 Unmanne	ed Aerial Vehicles Aboard Navy's Expeditionar	y Sea Base	
	Kairos	N201-X01	https://www.kairosautonomi.com	WEST 2025	
	Autonomi Universal Vehicle Controller (UVC)				
	NanoSonic, Inc.	N221-020	https://www.nanosonic.com	Sea-Air-Space 2025	
	HybridSil Advanced, Heat Tolerant Towlines for Aircra	aft Towed Decoys		•	
	NanoSonic, Inc.	N19A-T019	https://www.nanosonic.com	Navy STP SYSCOM	
	Unmanned Aerial System with Infinite Energy Scaver	nging		, ·	
	NanoSonic, Inc.	N21A-T002	https://www.nanosonic.com	Navy STP SYSCOM	
	Revitalization of Aircraft Carbon Fiber Composites in	New Additively Ma	anufactured Parts	1 · ·	
	Radiation Monitoring Devices, Inc.	N212-127		Navy STP SYSCOM	
	Conformal Frangible Coatings for Jet Fuel Systems b	v Atomic Laver De	eposition	· ·	
	Simmetrix, Inc.	N202-103	https://www.simmetrix.com	Navy STP SYSCOM	
	Computed Tomography-based Mesh Generation of L	aminated Compos	site Structural Components		
	Spectral Energies, LLC	N202-141	https://spectralenergies.com/	Sea-Air-Space 2025	
	Effects of Surface Roughness Patterns on Hypersoni	c Boundary-layer :	Stability and Transition	· · ·	
	Sporian Microsystems, Inc.	N212-131	https://www.sporian.com	Navy STP SYSCOM	
	Innovative Manufacturing of Polymer Derived Structu	ral Insulator Mater		1 *	
	Texas High Energy Materials, LLC	N151-008	https://www.txhienergy.com	Sea-Air-Space 2025	
	Self Sealing and Crashworthy Fuel Bladder for Naval	Applications TxHi		<u> </u>	
	Wolf Technical Services, Inc.	N171-026	https://www.wolftechnical.com/	Sea-Air-Space 2025	
	Aircrew-Mounted Self-Adjusting Tether System	II		I	
ny	GS Engineering, Inc.	N221-003	https://www.gsengineering.com	WEST 2025	
Autonomy	GS Engineering Phase II REAPr				
Aut	R-DEX Systems, Inc.	N22A-T022		Navy STP SYSCOM	
	Structured-light-based high-resolution and high-dynai		underwater ranging		
	Service Robotics & Technologies, Inc.	N201-X02	https://srtlabs.com/	Sea-Air-Space 2025	
	Adapting SRT M1 Hardware Portal for Navy Facility Health Monitoring and Prioritization				
	Spectral Energies, LLC	N22A-T023	https://spectralenergies.com/	Sea-Air-Space 2025	
	SHARK (Student-focused Holistic Aquatic Robotics Kit) Aquatic Soft Robotic STEM Education Kit				
	Triton Systems, Inc.	N211-072	https://tritonsystems.com/	Sea-Air-Space 2025	
	Autonomous Anchoring System For Unmanned Vess				
ts e	Blue Storm Associates, Inc.	A19-071		WEST 2025	
espa	Distributed Maritime Operations Environmental Intellin				
Envirol	Daniel H. Wagner Associates, Incorporated	N211-073	https://www.wagner.com	Navy STP SYSCOM	
ш	Intelligent Tactical Assistant for Active SONAR (ITAA				

	Navy SBIR Tra	nsition Pro	gram (Navy STP) Participants				
	Company / Topic Title	Topic#	website URL	Showcase			
nce	Caliola Engineering LLC	N213-142		WEST 2025			
& Intelligence	Automated High Frequency (HF) Communications Plann	ier					
	Creative MicroSystems Corp.	N222-119	http://creativemicro.com	Sea-Air-Space 2025			
uters	Next Generation Close Air Support Enhancement (NxCASE)						
Computers,	FIRST RF Corporation	N181-064	https://www.firstrf.com/	WEST 2025			
	P22-084 Scalable Directional Antenna Phase II Expansion	on					
Communications,	GIRD Systems, Inc.	N211-068	http://www.girdsystems.com	Sea-Air-Space 2025			
ommu	S-Band Antenna System for LCS Communications Relay	/					
	GIRD Systems, Inc.	N161-049	http://www.girdsystems.com	Sea-Air-Space 2025			
Control,	Anti-Jam Waveform for LCS Unmanned Vehicle Capabil	ity Advanceme	en				
Command,	Jove Sciences, Inc.	N193-A01	https://www.jove.com	WEST 2025			
Comr	Advanced Correlator - Navy (ACOR-N) and Cooperative E	Engagement C	apability (CEC) Data Fusion Testing (Data Collect	cted by Jove Sciences, Inc.)			
	MIKEL, Inc.	N171-023		WEST 2025			
	Computer Network Defense Trainer						
	Toyon Research Corp.	N20A-T024	https://www.toyon.com/	WEST 2025			
	Back Channel for LVC Training						
IED*	Vadum	N211-084	https://www.vaduminc.com	Navy STP SYSCOM			
	Advanced EOD Aiming Technology						
Cyber	GET Engineering	N212-110	https://gethdio.com/	Navy STP SYSCOM			
Ő	AI CDS						
	The Kenific Group, Inc.	AF192-001	https://pantheon-data.com/	Navy STP SYSCOM			
	Enterprise Resiliency Improvement Process - Forward Networks and Artificial Intelligence Integration						
Directed Energy	Physical Sciences Inc.	N211-094	http://www.psicorp.com	Navy STP SYSCOM			
Dire	Simplified Atomic Interferometer Laser System (SAILS)						
fare	IRflex Corporation	N191-012	https://www.irflex.com	Navy STP SYSCOM			
c War	MWIR Polarization-Maintaining Single Mode Fiber						
agneti	SimVentions, Inc.	N211-037	https://www.simventions.com/	Navy STP SYSCOM			
Electromagnetic War	Workload Assessment Notification and Demand Alert (W	/ANDA) Phase	9				
Elec	Toyon Research Corp.	N221-019	https://www.toyon.com/	WEST 2025			
	Long-Range Passive Surveillance in Anti-Access/Area-D	enial Environ	ments				
ogies	Creare LLC	N211-041		Sea-Air-Space 2025			
chnold	Tactical Cryogenic Cryocooler for HTS Applications						
er Te	Lynntech, Inc.	N21B-T023	https://www.lynntech.com	Sea-Air-Space 2025			
, Pow	Next-Generation Lithium Battery Enabled by Holey Grap	hene-based E	lectrodes				
Energy &	Mainstream Engineering Corp.	N162-079	https://mainstream-engr.com/	Navy STP SYSCOM			
Ene	4000 HR Marine Diesel						
	Maplewell Engineering Company LLC	N211-074		Sea-Air-Space 2025			
	CBM+ and RBM with an Energy Management Approach						

* Counter Improvised Explosive Devices (C-IED)


	Navy SBIR Transition Program (Navy STP) Participants					
	Company / Topic Title	Topic#	website URL	Showcase		
Engineered Resilient Systems	Altron, Inc.	N201-050	https://www.altroninc.com	Sea-Air-Space 2025		
sd Re: Sys	Real-time Insights for Combat System Integration and Te	esting				
ineere	Hepburn and Sons LLC	N21A-T005	https://www.hepburnandsons.com/	Sea-Air-Space 2025		
Eng	Ground Fault Detection System					
rms	Arete Associates	N212-123	https://arete.com/	Sea-Air-Space 2025		
Sea Platforms	External Payload Deployment System for Cylindrical UU	Vs				
ea P	Candent Technologies Inc.	N222-115	https://www.candent-technologies.com	Navy STP SYSCOM		
nd S	Quiet Auxiliary Propulsion Uni					
Ground and	Hepburn and Sons LLC	N201-055	https://www.hepburnandsons.com/	Navy STP SYSCOM		
Grou	Coaxial Insulated Bus Pipe for Medium Voltage Direct Co	urrent Integrat	ion on U.S. Navy Ships			
	Hydronalix, Inc.	N102-182	https://www.hydronalix.com/	WEST 2025		
	Compact, lightweight Autonomous Underwater Vehicle ((AUV)				
	MaXentric Technologies LLC	AF20R-DCSO1	https://www.maxentric.com	WEST 2025		
	HERMES - HF Enhanced Reliable Modernized Equipme	nt System				
	MaXentric Technologies LLC	N212-111	https://www.maxentric.com	Sea-Air-Space 2025		
	Linear Efficiency-Optimized Phased Arrays with Real-tim	e DPD				
	Moonprint Solutions	N211-024	https://www.moonprintsolutions.com/	Sea-Air-Space 2025		
	Thermavent-SD Munitions Lifting Assembly Sunshade Cove					
	Propulsor Technology Inc.	N211-056		Navy STP SYSCOM		
	Propulsor Geometric Certification System - Phase II Initia	al Proposal				
	Stratom, Inc.	N191-002		Sea-Air-Space 2025		
	Stratom Autonomous Pallet Loader Sequential Phase II	(2023-2025)				
	Vision Point Systems	N211-043	https://www.visionpointsystems.com/	Navy STP SYSCOM		
	Intelligent Corrosion Simulation and Design Tool					
ems	ACSILabs Inc	N211-082	https://www.acsilabs.org	WEST 2025		
	Accelerated Learning Model for Increased Strategic and	Tactical Decis	ion Making Using Multi-Player Games			
Human Sys	Bunker Supply	N211-004	https://www.bunkersupply.us/	Navy STP SYSCOM		
Hun	Naval Aircrew Emergency Armor Release (NACEAR)					
	ChromoLogic LLC	N222-120		Navy STP SYSCOM		
	Membrane Contactor based CO2 Absorbing Module (Me	C-CAM)				
	Design Interactive, Inc.	N21A-T016	https://designinteractive.net/	Navy STP SYSCOM		
	CACHE: (Contribute, Approve, Curate, Hyper-distribution Engine)					
	GreenSight	N22A-T023	https://www.greensightag.com/	WEST 2025		
	Innovative K-12 STEM Education Using Biomimetic Soft	Robotic Kits				
	Knowledge Based Systems, Inc.	N02-184	https://www.kbsi.com	WEST 2025		
	Training Simulation Intelligent Scenario Generation Tools	s (ISMF)				
	Lilt, Inc.	AF192-001	https://lilt.com/	Navy STP SYSCOM		
	Adaptive Neural Machine Translation Solution OCR Res	earch and Dor	nain-Adaptation Scaling Prototype			

	Navy SBIR Transition Program (Navy STP) Participants					
	Company / Topic Title	Topic#	website URL	Showcase		
sms	Qualtech Systems, Inc.	N221-069	https://www.teamqsi.com	Sea-Air-Space 2025		
Systems	Training and E-Learning for Maintenance-tasks using a N	Modern Platfor	m for Operational-efficiencies (TEMM-PO)			
	Qualtech Systems, Inc.	N192-134	https://www.teamqsi.com	Sea-Air-Space 2025		
Human	AR-driven Model-based Maintenance-training And Decision-support Aid (ARM-MADA)					
	Technology Holding, LLC	N21A-T001		WEST 2025		
	Innovative Method for Development of Hemp based Fab	ric				
	Vishwa Robotics	N211-040	https://www.vishwarobotics.com	Sea-Air-Space 2025		
	GAJJAR Innovative Submarine Escape Suit (GISES)					
Kinetic	Spectral Sciences, Inc.	N22A-T016		Navy STP SYSCOM		
Wear	Physics-Informed Machine Learning for Hypersonic Turk	oulence				
1P)	Advanced Ceramic Fibers, LLC	N22A-T019	https://www.acfibers.com	Sea-Air-Space 2025		
M&N	Enhanced Thermal, Mechanical, and Physical Properties	of CMC's Th	rough Novel Additives			
ses (Advanced Ceramics Manufacturing, LLC	N211-016	http://ACMTucson.com	WEST 2025		
ces	Multi-layer Structural Ceramic Foam Insulation	•				
J Prc	Advanced Ceramics Manufacturing, LLC	N231-D02	http://ACMTucson.com	WEST 2025		
urinç	SiC/SiC Produced by R3 Conversion					
Ifact	Applied Nanotech, Inc.	N221-013		Sea-Air-Space 2025		
Manufacturing Processes (M&MP)	High-Viscosity Pre-Penetrant Etching Materials					
s & I	Applied Optimization, Inc.	N21B-T022	https://www.appliedo.com	Sea-Air-Space 2025		
Materials &	Integrated Computations Materials Engineering (ICME) Modeling Tool for Optimum Gas Flow in Metal Additive Manufacturing Processes					
Mat	CFD Research Corporation	AF19A-T021	https://www.cfd-research.com/	Navy STP SYSCOM		
	Carbon-Carbon Composite Manufacturing Process Varia	bility and Imp	act on Flight Performance			
	Cornerstone Research Group, Inc.	N221-074	https://www.crgrp.com	Sea-Air-Space 2025		
	Dynovas, Inc.	N221-076	https://www.dynovas.com/	Sea-Air-Space 2025		
	High Efficiency Lined Pressurized - Gas Storage (HELP-	GAS)				
	Free Form Fibers LLC	N211-059	https://www.fffibers.com	WEST 2025		
	High Temperature, Low Dielectric Constant Ceramic Fibe	ers for Missile	Applications			
	Free Form Fibers LLC	N231-D04	https://www.fffibers.com	Sea-Air-Space 2025		
	Shaped, High-Strength Silicon Carbide Fibers for CMCs	in Hypersonic	Applications made by LCVD			
	Intellisense Systems, Inc.	N221-009	https://www.intellisenseinc.com	Sea-Air-Space 2025		
	Autonomous Robotic Calibration System					
	KW Associates LLC dba Ampere Scientific	N212-108	https://www.AmpereScientific.com	Sea-Air-Space 2025		
	Low-Inclusion Content for High-Grade Streel Material Us	ed in Gear-an	d-Bearing Components			
	Laser & Plasma Technologies	N204-A01		Navy STP SYSCOM		
	Modular Photonics Based Miniaturized End Effectors for	Challenging E	Environments			
	Mainstream Engineering Corp.	N211-045	https://mainstream-engr.com/	WEST 2025		
	Nanocoated Steel Aircraft Tie-Down Fitting					

	Navy SBIR Transition Program (Navy STP) Participants					
	Company / Topic Title	Topic#	website URL	Showcase		
AP)	Pacific Engineering, Inc.	N102-144	https://www.pacificengineeringinc.com/	Sea-Air-Space 2025		
(M&MP)	Composite Missile Hatches System for Surface Ships					
	Spectral Energies, LLC	N231-D03	https://spectralenergies.com/	Sea-Air-Space 2025		
	A Validated Carbon-Carbon Modeling Tool for Hypersoni	c Thermal Pr	otection Systems			
ogy	CFD Research Corporation	N231-D05	https://www.cfd-research.com/	Sea-Air-Space 2025		
and Simulation Technology	Fast-running simulation framework for Hypersonic C/C S	tructures and	flight performance analysis			
Tec	CFD Research Corporation	N212-136	https://www.cfd-research.com/	Sea-Air-Space 2025		
Ition	Hypersonic Aero-Optic Analysis and Imaging Framework	(HAAWK)	·			
mula	Design Mill, Inc.	N172-101	https://www.designmillinc.com	WEST 2025		
id Si	Shipboard Dimensional Analysis Tool (SDAT)	<u>^</u>				
ıg an	Energy and Security Group	N221-001	https://energyandsecurity.com/	Navy STP SYSCOM		
Modeling	USMC Civilian Population Modeling					
Mo	Innovision LLC	N22A-T017	https://www.innovisionllc.com	Sea-Air-Space 2025		
	Integrated Digital Engineering Environment for PPE Deve	elopment (IDE	EEP)			
	M4 Engineering, Inc.	N221-004		WEST 2025		
	Embedded Aircraft Design Geometry in Multidisciplinary	Design Optim	nization Frameworks			
	Materials Research & Design	N221-067	https://www.m-r-d.com	Sea-Air-Space 2025		
	A Digital Twin Model for Robust 3D Woven PMC Pi Joints					
ors	Alphacore, Inc.	N212-126	https://www.alphacoreinc.com	WEST 2025		
Sensors	Wideband Multi-Element Optical Receiver					
	AnTrust	N221-014	https://www.AnTrust.us	Sea-Air-Space 2025		
	Platform Agnostic Change Detection for Littoral Environm	nents (PACDI	_E)			
	Arete Associates	N211-089	https://arete.com/	WEST 2025		
	BOLTS					
	Critical Frequency Design, LLC	N221-005	https://www.criticalfrequency.com	Sea-Air-Space 2025		
	DIGITAL ENGINEERING - Photonics Integration for Mod	ular Open Sy	stems Approach Avionics Plug-in Modules			
	ENGIN-IC, Inc.	N212-137	https://www.engin-ic.com	WEST 2025		
	High Efficiency, Low Size and Weight and Power (SWAP) Solid State	Power Amplifiers (SSPAs) for Sensor Application	ns		
	FTL Labs Corporation	N211-042		WEST 2025		
	SharpScan: Improved Resolution COTs based Small-Apple	erture Marine	RADAR			
	Hepburn and Sons LLC	N211-069	https://www.hepburnandsons.com/	Sea-Air-Space 2025		
	Innovative Test Apparatus for Monitoring Insulation Healt	th of Medium	Voltage Direct Current Cables and Insulated Bus	s Pipe		
	Holoptic LLC	N221-079	https://holoptic.com	Navy STP SYSCOM		
	Numerical-Aperture Optimized Microlens Array (NOMA)					
	Intellisense Systems, Inc.	N201-038	https://www.intellisenseinc.com	Navy STP SYSCOM		
	Submarine Active Meteorological Sensor					
	NanoVox LLC	N221-079	https://www.nano-vox.com	Navy STP SYSCOM		
	Low Loss, Asymmetric Aperture-Matched Microlens Arra	ys				

	Navy SBIR Transition Program (Navy STP) Participants					
	Company / Topic Title	Topic#	website URL	Showcase		
ors	NanoVox LLC	N211-028	https://www.nano-vox.com	Navy STP SYSCOM		
Sensors	Additive Manufacture of Nanocomposite Magneto-	dielectric Conformal An	tennas			
	Physical Sciences Inc.	N221-079	http://www.psicorp.com	Navy STP SYSCOM		
	Broadband Microlens Arrays for Efficient Coupling	into Photonic Imaging [Devices			
	RDA, Inc.	N182-116		Sea-Air-Space 2025		
	Minimization of In-Band Interferers on Airborne An	ti-Submarine System Po	erformance	•		
	Seatrec, Inc.	N20A-T023	https://seatrec.com	Navy STP SYSCOM		
	Air-Sea Thermal Energy Harvesting on an Arctic B	uoy		·		
	Signal Systems Corporation	N172-122		WEST 2025		
	Buoy Localization and Uncertainty Estimation (BLL	JE Phase II.5)		•		
	Surface Optics Corporation	N202-118	http://www.surfaceoptics.com	Sea-Air-Space 2025		
	Passive System for Detection and Identifiction of U	AV's Using Multispectra	al/Hyperspectral Imaging Technologies	•		
	Triton Systems, Inc.	N211-064	https://tritonsystems.com/	WEST 2025		
	Low Cost Deepwater Delivery Vehicle					
	Wavefront Vision, Inc.	N191-008	http://www.wavefrontvision.com	Navy STP SYSCOM		
	Centimeter-sized Photon-Sensing Integrated Circu	it (PSIC) Detector and I	Receiver for Lidars at 475nm Wavelength	•		
į	Beast Code LLC	AF21B-TCSO1	https://www.beast-code.com	WEST 2025		
	InSITE (Integrated Surface Information Technology Environment)					
2	Fathom5	N22A-T026	https://www.fathom5.com/	Sea-Air-Space 2025		
,	Microscale Onboard Integrated Condition Assessm	nent		•		
	FTL Labs Corporation	N204-A01		Sea-Air-Space 2025		
	DADTMA Gen3 - Distributed Acquisition Digital Tw	in Maintenance Archite	cture			
	Global Strategic Solutions LLC	N221-018	https://www.gssllc.net	WEST 2025		
	Smart Avionics Systems Environment for Automatic Test Systems					
	Materials Sciences LLC	N221-006	https://www.msc-llc.com/	Sea-Air-Space 2025		
	Room-Temperature Filler for Honeycomb Repairs - MSC P4769					
	Metis Design Corporation	N161-009	https://www.MetisDesign.com	Sea-Air-Space 2025		
	Fastener Attrition Sensing Transducer (FAST)					
les		N193-146		WEST 2025		
lechnologies	Pulse Power for High Energy Laser Applications					
ecnn	TransWave Photonics, LLC	N211-021	https://transwavephotonics.com	Navy STP SYSCOM		
Ē	High-efficiency Purcell-enhanced mid-infrared light					

Connect with us!

The Navy SBIR Transition Program (Navy STP) has a media presence on three platforms. For information on our participating small businesses, transition opportunities and SBIR/STTR news connect with us here:

To submit an article idea, make comments or ask questions about this newsletter, e-mail: navystptransitions@atsicorp.com